Perché le estremità delle ali degli aerei sono curve?

Se ti è mai capitato di sederti vicino al finestrino di un aereo, potresti aver notato un dettaglio curioso: le estremità delle ali non terminano più in modo lineare come accadeva nei vecchi modelli, ma presentano una curvatura verso l’alto, una piccola "coda" o addirittura una superficie aggiuntiva piegata verso l’esterno. Questo elemento prende il nome di winglet, e negli ultimi decenni è diventato una componente onnipresente negli aerei di linea moderni. Ma a cosa serve realmente quella curvatura? È solo una scelta estetica o c’è dietro una funzione ingegneristica ben precisa?
Che cosa sono i winglet?
In realtà, i winglet sono una delle innovazioni più intelligenti e “silenziose” dell’aerodinamica moderna. Non fanno rumore, non si muovono, non attirano l’attenzione dei passeggeri, eppure contribuiscono in modo sostanziale a migliorare le prestazioni del volo, ridurre i consumi di carburante, aumentare l’autonomia degli aeromobili e diminuiscono le emissioni. La loro funzione è strettamente legata a uno dei nemici invisibili del volo: la resistenza aerodinamica. Ogni volta che un corpo si muove nell’aria, incontra delle forze che si oppongono al suo movimento. Per gli aerei, queste forze sono cruciali, e la lotta contro di esse è al centro della progettazione aeronautica da oltre un secolo. I winglet rappresentano una soluzione avanzata, elegante e altamente funzionale a un problema vecchio quanto il volo stesso: i vortici di estremità alare, causa principale della cosiddetta resistenza indotta. Durante il volo in crociera, uno degli ostacoli principali che un aereo deve affrontare è la resistenza aerodinamica, cioè l'insieme delle forze che si oppongono al suo avanzamento nell’aria. Questa resistenza non è causata da un singolo fattore, ma deriva dalla combinazione di molte variabili: la forma, le dimensioni, l’inclinazione e la velocità del velivolo. Ma nel caso degli aerei, entra in gioco anche un tipo di resistenza peculiare, strettamente legata alla generazione della portanza: si tratta della resistenza indotta, o induced drag.

Come nasce la resistenza indotta?
Per comprendere questo fenomeno, è necessario tornare alle basi del volo: un’ala genera portanza grazie alla differenza di pressione tra la sua superficie superiore (a bassa pressione) e quella inferiore (ad alta pressione). Questo disequilibrio crea un flusso d’aria che tende a spostarsi lateralmente, salendo dalla parte inferiore a quella superiore — specialmente in prossimità delle estremità alari. Il risultato sono dei vortici di estremità (wingtip vortices), spirali d’aria che si sviluppano dietro l’ala e che comportano un flusso d’aria inclinato all’indietro e verso il basso (downwash). Questo flusso altera la direzione della forza di portanza, inclinando leggermente la risultante totale e producendo, quindi, una componente di resistenza: la resistenza indotta.
L’ala infinita: un ideale teorico
Per limitare questi vortici, i progettisti aeronautici si sono da sempre scontrati con un vincolo geometrico fondamentale: l’esistenza stessa dell’estremità alare. In teoria, un’ala infinita — cioè senza estremità — non genererebbe vortici laterali, poiché i flussi si incontrerebbero solo sul bordo d’uscita. Naturalmente, un’ala infinita è irrealizzabile, ma allungare le ali (aumentare l’aspect ratio) si è dimostrato uno dei modi più efficaci per ridurre la resistenza indotta.
La soluzione ellittica: lo Spitfire e le sue ali
Una delle prime soluzioni tecniche a questo problema fu adottata sul celebre Supermarine Spitfire, caccia britannico della Seconda Guerra Mondiale. Il suo profilo alare ellittico era progettato per distribuire in modo ottimale la portanza lungo tutta l’ala, riducendo al minimo la formazione dei vortici. Questo design conferiva allo Spitfire prestazioni eccezionali, ma comportava anche problemi strutturali e comportamenti critici in fase di stallo. Il costo di produzione elevato e la complessità costruttiva limitarono l’adozione di ali ellittiche su larga scala.

Jet e ali a freccia: un nuovo equilibrio
Con l’avvento dei jet e del volo transonico, l’industria aeronautica ha favorito le ali a freccia positiva, capaci di ridurre la resistenza d’onda (wave drag) e migliorare la stabilità strutturale. Tuttavia, questo tipo di ala non risolve direttamente il problema dei vortici alle estremità, che continuano a generare resistenza indotta.
Nascono i winglet: piccole alette, grandi risultati
Negli anni ’70, al NASA Dryden Flight Research Center, si iniziarono a testare piccole alette verticali poste all’estremità delle ali: i winglet. I primi test furono condotti su un Boeing 707, con risultati sorprendenti: si ottenne una riduzione della resistenza indotta tale da diminuire il consumo di carburante del 6,5%.
I winglet funzionano come barriere fisiche che limitano l’interazione tra la pressione inferiore e superiore, smorzando l’intensità dei vortici. Tuttavia, la loro aggiunta comporta anche implicazioni strutturali, poiché aumentano la massa alle estremità dell’ala e possono modificarne il comportamento dinamico (flessioni, risonanze, sollecitazioni).
Retrofit e vantaggi operativi
Una delle ragioni del successo globale dei winglet è stata la possibilità di applicarli retroattivamente (retrofit) su aeromobili esistenti, senza modificare significativamente la struttura principale né l’ingombro a terra. Questo significa migliorare l’efficienza senza alterare le operazioni aeroportuali.
Un esempio recente è rappresentato dalla compagnia Ryanair, che ha avviato una campagna di retrofit sui suoi Boeing 737 Next Generation montando i più moderni Split Scimitar Winglets, già adottati sui 737 MAX. Secondo la compagnia, il risparmio atteso è dell’1,5% sul carburante, pari a circa 65 milioni di litri in meno all’anno. Una cifra enorme, sia in termini economici che ambientali.
In sintesi
- I winglet rappresentano una delle soluzioni ingegneristiche più intelligenti e “invisibili” dell’aviazione moderna.
- Frutto di ricerca aerodinamica avanzata, permettono di migliorare l’efficienza, ridurre l’impatto ambientale e aumentare l’autonomia operativa degli aeromobili.
- La prossima volta che salirai su un aereo, guarda verso l’estremità dell’ala: quella piccola curva verso l’alto non è solo estetica — è il simbolo di decenni di evoluzione tecnologica al servizio del volo.
Dott.Igor Graziato
Past Vice President
Ordine Psicologi Piemonte
Psicologo del lavoro e delle organizzazioni
Specialista in Psicoterapia
Virtual Reality Therapist
REB HP Register for Evidence-Based Hypnotherapy & Psychotherapy
AAvPA Member Australian Aviation Psychology Association
APA Member American Psychological Association
ABCT Member Association for Behavioral and Cognitive Therapies
Division 30 Society of Psychological Hypnosis (APA)